Mobile Phone Application For Compressor Performance

Dustin McRae¹, Jordan Berke¹, Khristofer Thomas¹, Luis Bonilla², Trevor Hubbard²

¹Department of Mechanical Engineering ²Department of Electrical and Computer Engineering

> Project Sponsor Russell Wilburn, Industry Advisor General Electric Oil & Gas

Scope of Project

- Diagnostic tools are already being used by GE for compressor performance, but they...
 - Are too expensive
 - Are time consuming
 - Require customer to power down compressor
- Create a non-intrusive flow velocity measurement system to interface with an Android mobile phone application

Scope of

Functional

Diagram

Sensor

Selection

Theoretical

Application

Mounting and Housing Unit

Test Apparatus

Rationale

Mobile

Budget

Conclusion

Processing and Communication

Project

Scope of Project

- Customer Needs
 - No modifications to pipes; non-intrusive method
 - Transfer data wirelessly to an Android phone
 - Software must collect, store and display data
 - Assembly time less than 5 minutes
 - Working demo

Scope of

Functional

Diagram

Sensor

Selection

Theoretical

Application

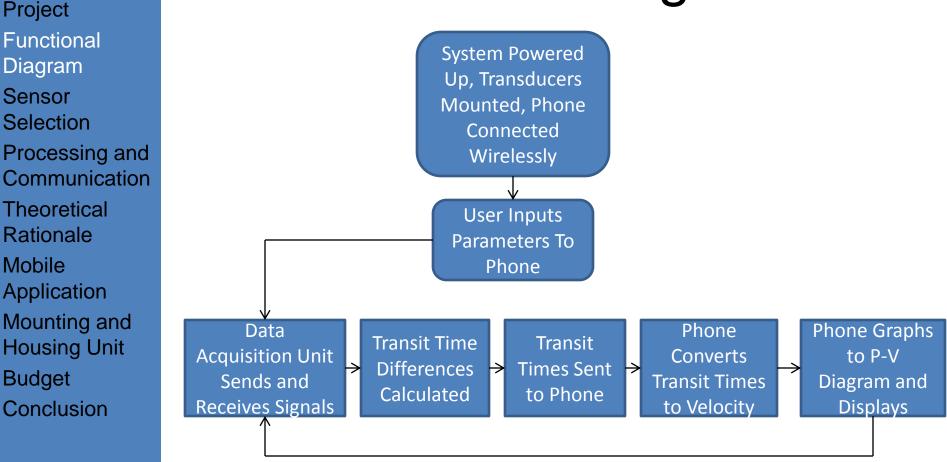
Mounting and

Housing Unit

Test Apparatus

Rationale

Mobile


Budget

Conclusion

Processing and Communication

Project

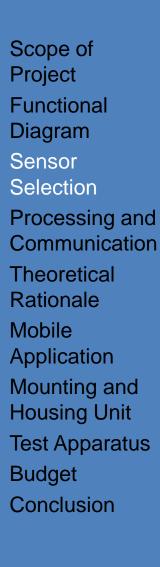
Functional Diagram

Scope of

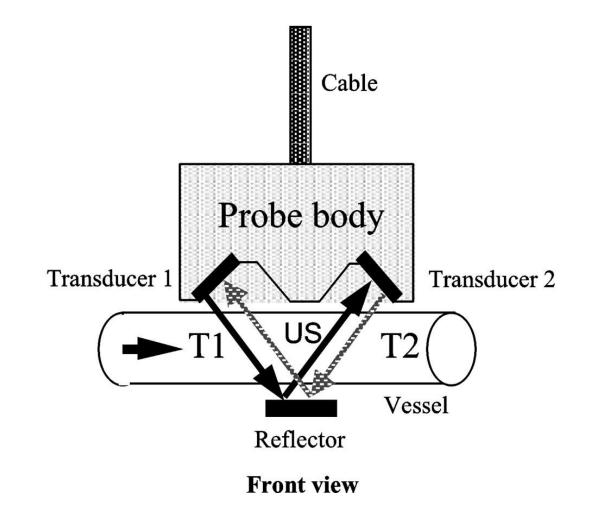
Scope of Project Functional Diagram

- Sensor Selection
- Processing and Communication
- Theoretical Rationale
- Rational
- Mobile
- Application
- Mounting and
- Housing Unit Test Apparatus

Budget

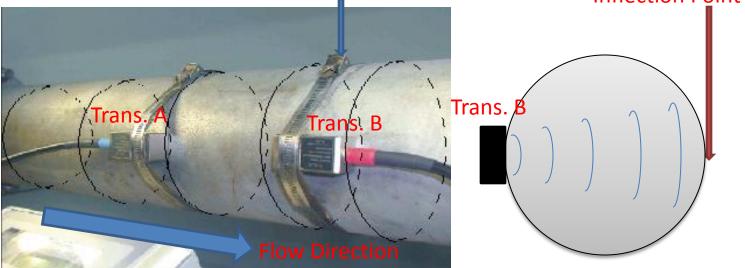

Conclusion

What Are Ultrasonic Transducers?


- Generate frequencies
 ~18 kHz and above by
 turning electrical signals
 into sound via
 - piezoelectric crystals

- Slowing of the ultrasonic signal is dictated by the properties of the medium, including its motion
- This slowing can be calculated using several methods
- Fulfills design spec. of unintrusive measurement

Transit-Time Flow Concept

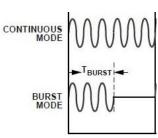


Scope of Project Functional

- Diagram
- Sensor Selection
- Processing and Communication
- Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus Budget
- Conclusion

Transit-Time Flow Concept

- Ultrasonic waves exit emitter A and are reflected off the inflection point into emitter B
- Signal is slowed based on fluid properties and velocity of flow
- Signal will flow faster in the direction of the flow
 Clamp
 Inflection Point



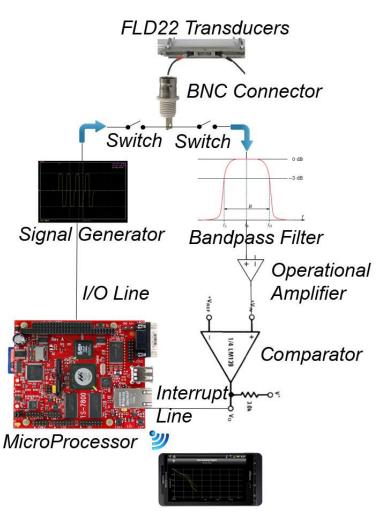
Scope of Project

- Functional
- Diagram
- Sensor
- Selection
- Processing and
- Communication
- Theoretical
- Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

Signal Burst Method

 Bursts of signal can be sent through transducers with the microprocessor waiting for input

Used on Fuji Portaflow X ultrasonic flow meter
 Cross Correlation Method


- Shannon-Nyquist Theorem
- Reproduce the signal (red) and compare to initial signal (blue)

- Scope of Project
- Functional
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical
- Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

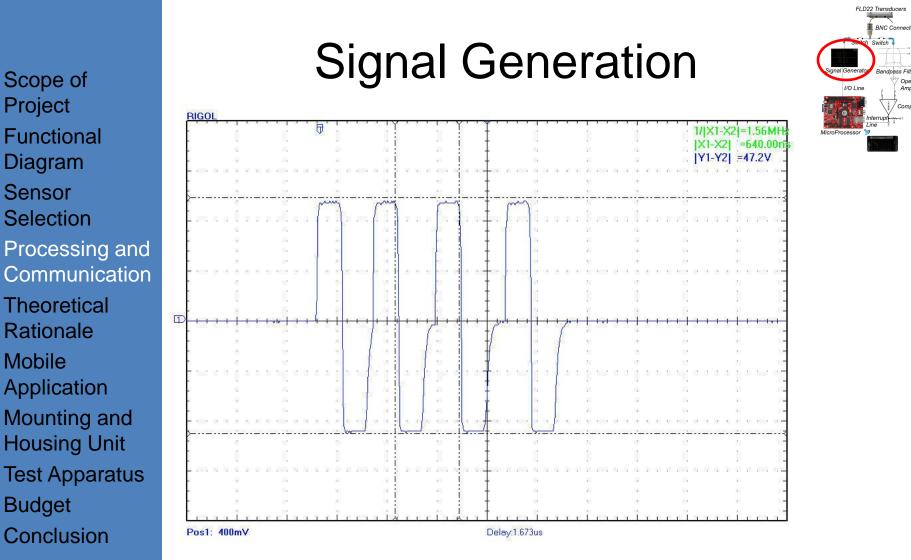
Concepts for Data Acquisition Unit

- Single-board PC or Microcontroller Unit?
 - Single-board PC contains a Field Programmable Gate Array
 - More time to setup operating system on Single-board PC
- Wi-Fi or Bluetooth?
 - Wi-Fi has greater range
 - Added security with Wi-Fi

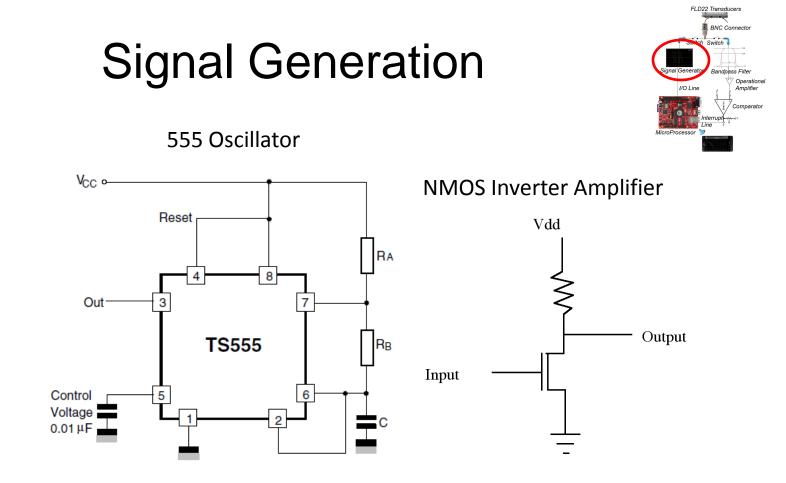
System Level Diagram

Scope of Project Functional Diagram Sensor Selection Processing and Communication Theoretical Rationale Mobile

Application


Mounting and Housing Unit

Test Apparatus


Budget

Conclusion

4/12/2012

- Signal sent from Fuji Portaflow X data acquisition unit
- To be reproduced on our custom unit

- TS555 generates 2 MHz square wave
- Output from pin 3 is amplified to 50V by NMOS inverter amplifier

Scope of

Functional

Diagram

Sensor

Selection

Theoretical

Application

Mounting and

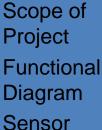
Housing Unit

Test Apparatus

Rationale

Mobile

Budget


Conclusion

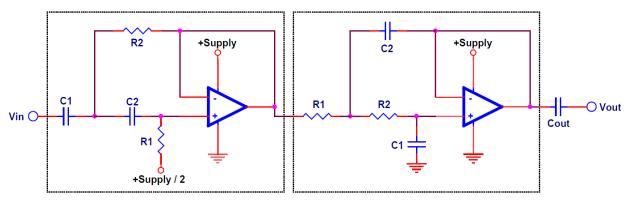
Processing and

Communication

Project

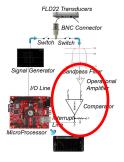
FLD22 Transducers Signal Detection BNC Connector Switch Signal Genera I/O Line ek Stop M 10.0 us Zoom Factor: 2.5 X Noise Filter Off

- Selection
- Processing and Communication
- Theoretical Rationale
- **Mobile**
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion



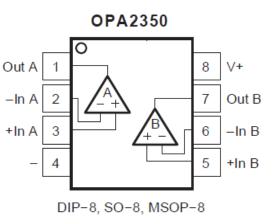
Signal circled that needs to be detected

Amplifier


Comparato

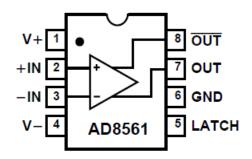
Band Pass Filter For 1.5Mhz-2.5Mhz

Signal Detection



Project Functional Diagram Sensor Selection Processing and Communication Theoretical Rationale Mobile Application

Scope of


- Mounting and Housing Unit
- Test Apparatus
- Budget
- Conclusion

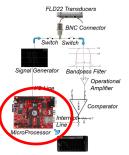
Operational Amplifier

• Wide Bandwidth: 38MHz

Comparator

• 7 ns Propagation Delay at 5V

• Single Supply Operation: 3V to 10V

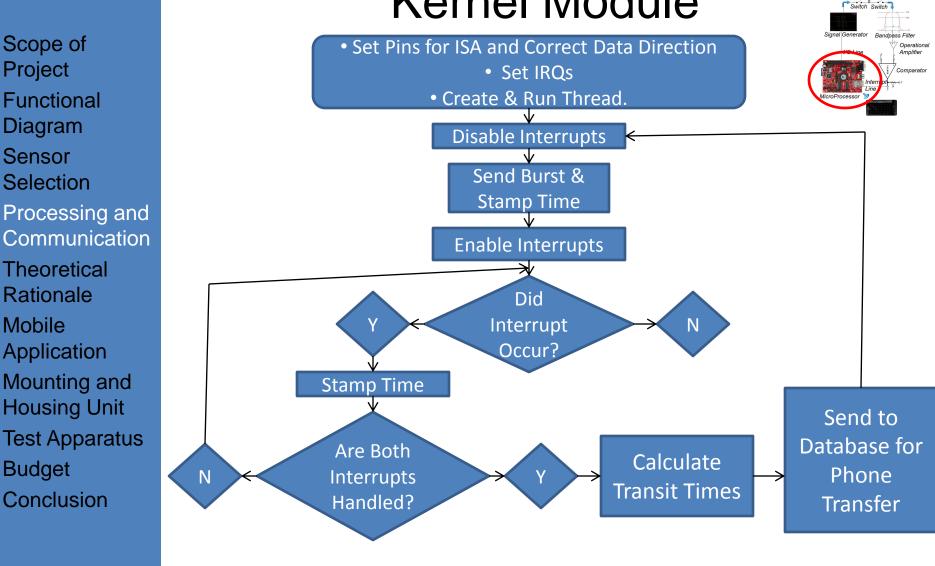

- Simple non-inverting amplifier configuration used for op amp
- Comparator will be used to set off interrupt on microprocessor

Scope of Project **Functional** Diagram Sensor Selection Processing and Communication Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus

Budget

Conclusion

Data Acquisition Unit's Processor

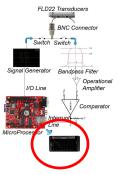


TS-7800 Single Board PC

- 500 MHz ARM9 CPU
- 12,000 LUT programmable FPGA
- Runs Kernel 2.6 and Debian by default

Kernel Module

FLD22 Transducers


BNC Connecto

Scope of Project **Functional** Diagram Sensor Selection Processing and Communication Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus

Budget

Conclusion

Communication To Phone

ThinkPenguin Wireless N USB Adapter

- Data Transfer Rate Up to 300Mbps
- Security WEP, WPA. WPA2, WPA-PSK/WPA2-PSK(TKIP/AES)
- Required custom kernel module for 2.6.34
- Driver was cross-compiled for ARM on separate Linux machine

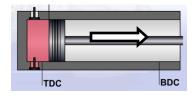
Scope of Project

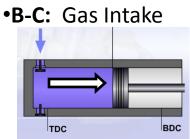
- **Functional**
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

Compressor Flow Characteristics

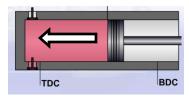
Need two key parameters

1. Volumetric flow rate

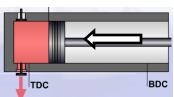

- Velocity is measured
- Pipe diameter is known, thus hydraulic cross-section

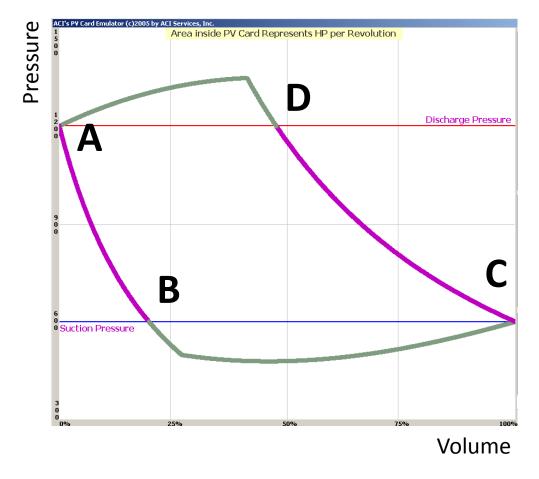

2. P-V Diagram

 ${\scriptstyle \odot}$ Needed to begin diagnosis


P-V Diagram

•A-B: Re-Expansion





•C-D: Compression

•D-A: Gas Discharge

4/12/2012

Scope of

Functional

Processing and

Communication

Theoretical Rationale

Application

Mounting and Housing Unit

Test Apparatus

Mobile

Budget

Conclusion

Diagram

Sensor Selection

Project

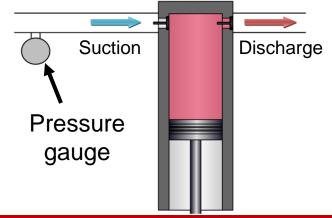
- Scope of Project
- Functional
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale
- Mobile
- Application
- Mounting and Housing Unit
- Test Apparatus
- Budget
- Conclusion

Calculating Pressure in Pipe

- Pressure in P-V diagram is static pressure
- Relationship between static pressures and temperatures in compressible fluid:

$$P_d = \frac{P_s}{\left(\frac{T_s}{T_d}\right)^{\frac{\gamma}{\gamma-1}}}$$

- T_s and P_s : temperature and static pressure in suction pipe near suction valve, respectively
- T_d and P_d : temperature and static pressure in discharge pipe near discharge valve, respectively
- Need ability to measure T_s , T_d and P_s
- Assume compressibility constant, $\gamma = 1.4$ (air)


- Scope of
- Project
- **Functional**
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical
- Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

Pressure Drop in Pipe

• Pressure drop in pipe between valve and pressure gauge:

$$\Delta p = f \cdot \frac{L}{D} \cdot \frac{1}{2} \rho V^2$$

- Where:
 - f = Darcy friction factor
 - *L* = distance between valve and pressure gauge
 - D = hydraulic diameter of pipe
 - ρ = density of the fluid
 - V = measured velocity of the fluid in the pipe

Scope of Project

- Functional
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus Budget
- Conclusion

Pressure Drop in Pipe

• Darcy friction factor dependent on Reynolds Number:

$$Re = \frac{\rho VD}{\mu}$$

- μ = Dynamic viscosity of the fluid
- When considering laminar vs. turbulent flow, difference in pressure drop is small
 - For turbulent cases that are close to laminar

• So assume laminar flow:

$$f = \frac{64}{Re}$$

- No need for Moody charts
 - Preliminary diagnostic tool no need for high precision
 - Much simpler for operator and App

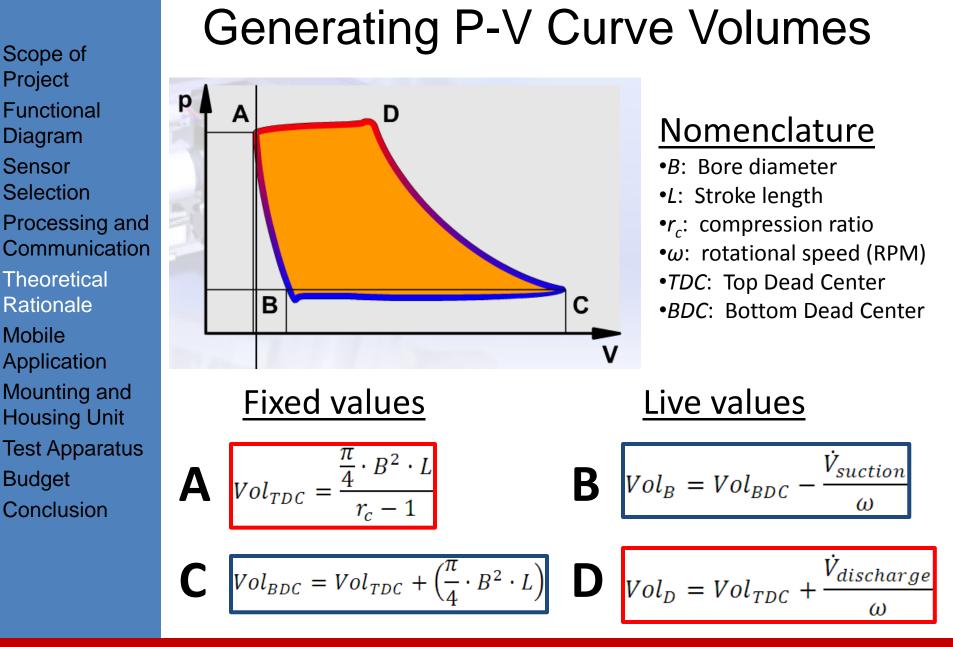
Scope of

- Project
- **Functional**
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Duuyei
- Conclusion

Pressure Drop in Pipe

• Pressure drop in pipe resolves to:

$$\Delta p = \frac{8\mu LV}{3D^2}$$


• Using common units:

- L and D in inches, V in
$$\frac{ft}{s}$$
, μ in $\frac{lb_f \cdot s}{ft^2}$

Thus, suction pressure:

$$P_{s} = P_{measured} + \Delta p$$

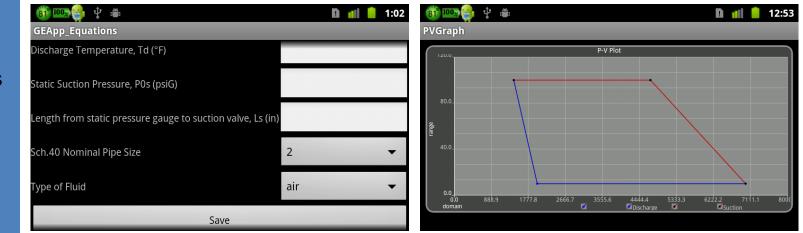
$$P_{s} = P_{0s} + \frac{8\mu LV_{suction}}{3D^{2}}$$

- Scope of Project
- Functional
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical
- Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

4/12/2012

Mobile Application

- Purpose of the app:
 - To collect data from Single Board PC
 - Store in database
 - Make calculations and display Flow Rate and PV graph



25

- Scope of
- Project
- **Functional**
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus Budget Conclusion

Graphical User Interface

- App currently takes user inputs and graphs a PV plot
 - Inputs: T_s , T_d , P_{0s} , L_s , select pipe size, select fluid
- Still perfecting equation implementations to make as accurate a graph as possible

Scope of Project

Functional

- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus Budget

Conclusion

Current Implementation

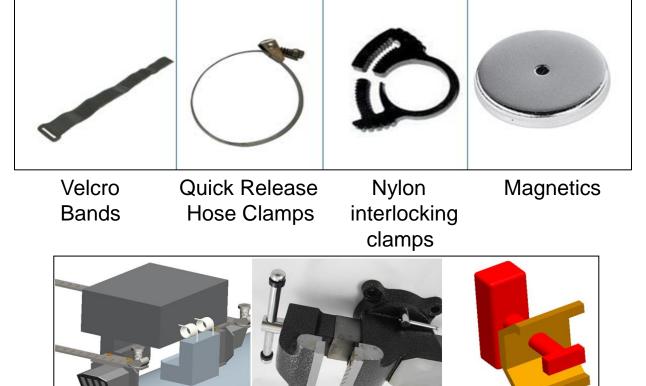
• To minimize user inputs, lookup tables were coded into the database

Schedule 40 Pipe Sizes

Nominal Pipe Sizes	OD	ID
2	2.38	2.07
2.5	2.88	2.47
3	3.5	3.07
3.5	4	3.55
4	4.5	4.03
5	5.56	5.05
6	6.63	6.07
8	8.63	7.98
10	10.75	10.02
12	12.75	11.94
14	14	13.13
16	16	15

Air Density Table

			010	
temp		GP0	GP5	GP10
	30	0.081	0.109	
	40	0.08	0.107	
	50	0.078	0.105	
	60	0.076	0.102	
	70	0.075	0.101	
	80	0.074	0.099	
	90	0.072	0.097	
	100	0.071	0.095	
	120	0.069	0.092	
	140	0.066	0.089	
	150	0.065	0.087	
	200	0.06	0.081	
	250	0.056	0.075	
	300	0.052	0.07	
	400	0.046	0.062	
	500	0.041	0.056	


- Scope of Project
- Functional
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

Future Implementation

- Adding security measures when looking at old data
- Sending data via email or web server when internet available
- Adding lookup table of known compressor specs, so user inputs compressor model

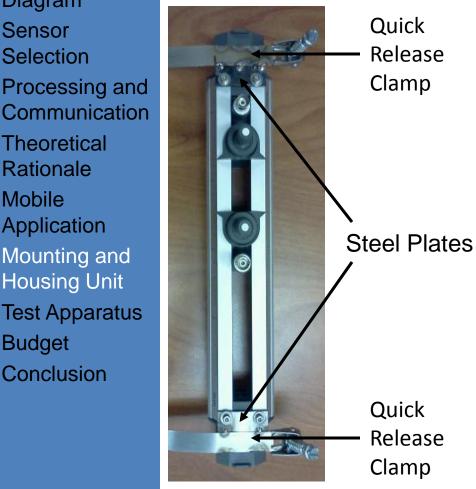
Scope of Project **Functional** Diagram Sensor Selection **Processing and** Communication Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus Budget Conclusion

Attaching: Mounting and Housing Unit

Spring Loaded Clips

Vise Attachment

Key Attachments


Scope of Project **Functional** Diagram Sensor Selection Processing and Communication Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus Budget Conclusion

Concept Selection for Mounting and Housing Unit

	Pugh Matrix for Clamping System						
	Design Features	Current Methods	Velcro Bands	Quick Release Clamps	Interlocking Clamps	Magnetics	Importance Rating
	Cost	0	-1	-2	-3	-3	4.45
	Lead Time	0	1	-1	-2	-1	1.73
	Installation Time	0	-1	2	-2	3	18.33
	Functionality	0	3	2	-1	-3	19.00
	Usability	0	1	1	-1	2	17.00
	Sum	0	3	2	-9	-2	
	Total	0	52.94	81.02	-89.48	16.90	

Same process done with housing unit

Final Concept and Results: Mounting System

Results

- Satisfies customer requirement
- Needed modification
 - Threaded holes needed to be unthreaded
 - Testing used two right sided clamping attachment

Scope of

Functional

Diagram

Sensor

Selection

Theoretical Rationale

Application

Mounting and

Housing Unit

Mobile

Budget

Conclusion

Project

Scope of

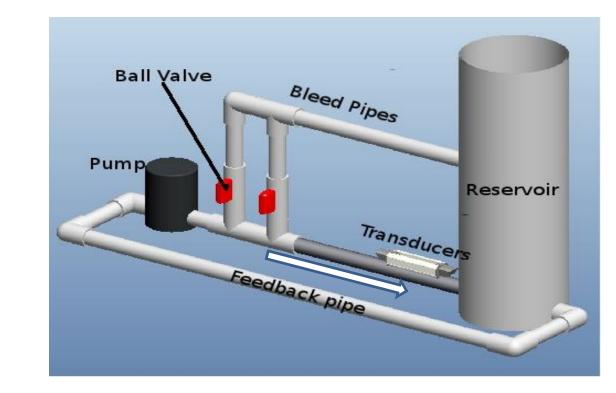
- Project
- Functional
- Diagram
- Sensor
- Selection
- Processing and
- Communication
- Theoretical
- Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

Final Concept and Results: Housing Unit

Final Concept

- Aluminum
- Has a ledge for bread boards (not shown)
- Fan for cooling
- Vents (Not shown)
- Four legs
- Тор

Results


- Satisfies customer requirement
- Needed modification
 - Needed longer legs

Scope of Project **Functional** Diagram Sensor Selection **Processing and** Communication Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus Budget

Conclusion

Constant Velocity Test Apparatus

- 2 Ball Valves (3 total states)
- Variac (for variable voltage output) at 3 voltages
- 30 minutes for steady state

Scope of Project **Functional** Diagram Sensor Selection Processing and Communication Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus

Flow Apparatus Calibration

Flow Situati	ion	Both	Closed		First O	pen	Both Open		en
Velocity (ft	/s)	1	.4		1.0	I		0.7	
Change in velocity due to opened ball valves									
Voltage (V/	4C)		60		90			120	
Velocity (ft	:/s)		0.8		0.9		1.4		
Change in velocity due to supply voltage level (valves closed)									
Flow Situation	B	Both Closed			First Open		Both Open		
Voltage	60	90	120	60	90	120	60	90	120
Velocity (ft/s)	0.8	1.2	1.4	0.6	0.8	1.0	0.6	0.6	0.7

Change in velocity due to ball valves and supply voltage level

Budget

Conclusion

Budget

Budget Summary						
Budget Total Spent Funds Av		Funds Available				
\$2,000.00	\$919.12	\$720.88				
		\$1,080.88	*			
Vendor	Part no.	Unit Price	Qty	Net Price		
Technologic Systems	TS-7800-128-512F	\$269.00	1	\$269.0		
Technologic Systems	WIFI-N-USB	\$35.00	2	\$70.0		
Technologic Systems	TS-ADC24	\$109.00	1	\$109.0		
Technologic Systems	PS-12VDC-REG-2P2	\$22.00	1	\$22.0		
Technologic Systems	KIT-7800	\$100.00	1	\$100.0		
Digi-Key	DAC08CPZ-ND	\$2.67	3	\$8.0		
Digi-Key	AD8561ANZ-ND	\$4.67	3	\$14.0		
Digi-Key	438-1045-ND	\$8.98	2	\$17.9		
Digi-Key	AD848JNZ-ND	\$7.03	3	\$21.0		
McMaster-Carr	7750K196	\$39.77	1	\$39.7		
McMaster-Carr	2389K113	\$3.85	4	\$15.4		
McMaster-Carr	48925K16	\$11.90	1	\$11.9		
McMaster-Carr	48925K93	\$4.39	1	\$4.3		
McMaster-Carr	4880K46	\$2.15	2	\$4.3		
McMaster-Carr	4880K43	\$0.78	1	\$0.7		
McMaster-Carr	18815K62	\$8.01	1	\$8.0		
McMaster-Carr	8249K81	\$143.51	1	\$143.5		
Fouraker		\$60.00	1	\$60.0		
Home Depot		\$55.00	1	\$55.0		
Labor						
Vendor	Part	Cost/hr	Hrs	Net Price		

Processing and Communication Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus Budget

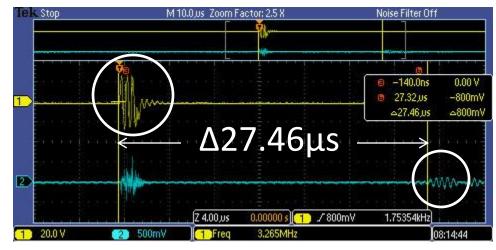
Scope of

Functional

Diagram

Selection

Sensor


Project

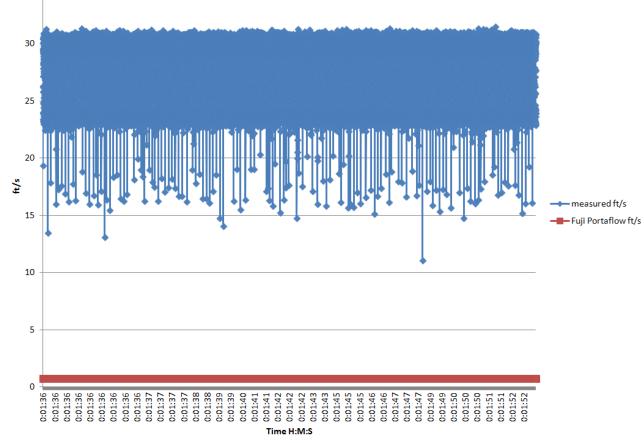
Conclusion

- Scope of
- Project
- **Functional**
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical
- Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

Signal Burst Proof

Downstream

Upstream


Scope of Project

35

- Functional
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Budget
- Conclusion

4/12/2012

Data Acquisition Results

- ~5000 measurements per second
- Measurements taken on same setup
- Measured data fairly consistent but off by quite a bit, believed to be caused by spikes in the supply

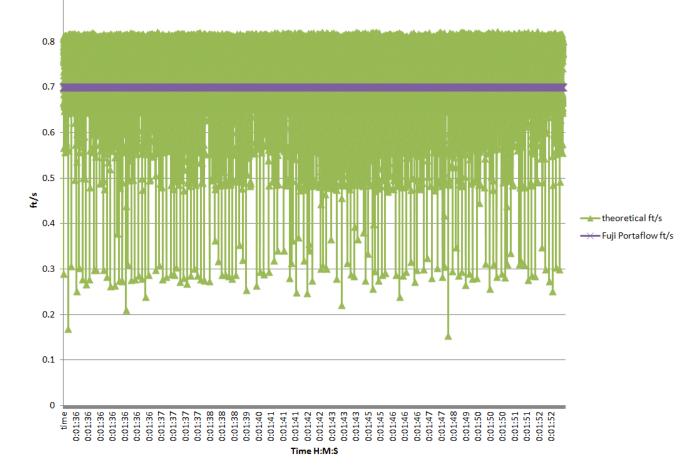
Scope of

- Project
- Functional
- Diagram
- Sensor
- Selection
- Processing and
- Communication
- Theoretical
- Rationale
- Mobile
- Application
- Mounting and
- Housing Unit
- Test Apparatus
- Dudget
- Budget
- Conclusion

Data Acquisition Results

Average t Values From Previous Graph

<i>t</i> up	<i>t</i> down	Δt
35.48µs	19.36µs	16.12µs


• After accounting for propagation delay through circuitry, *t* up appears to be a valid value when comparing to signal burst proof scope shots

35.48µs- 27.46µs=propagation delay of circuitry (to be later accounted for in calibration)

• From analyzing the circuit, supply spikes may be setting off the comparator too early for *t* down (each up and down are on different circuitry with same components)

• Solution for proof: Use Δt value (80 ns) obtained from signal burst proof scope shots along with measured t up value to obtain velocities

Data Acquisition Results

- Used measured t up value along with Δt value obtained from signal burst scope shots
- Average percent error of 10.28%

Scope of

Functional

Diagram

Sensor

Selection

Theoretical

Application

Mounting and Housing Unit

Test Apparatus

Rationale

Mobile

Budget

Conclusion

Processing and

Communication

Project

Scope of

- Project
- Functional
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale
- Mobile
- Application
- Mounting and Housing Unit

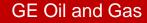
٠

- Test Apparatus Budget
- Conclusion

Conclusions

Achievements

- Instruments mount in roughly 2 minutes
- Signal is generated and received successfully
- Measurements accurate to 2 ns with use of the 500 MHz CPU timer
 - ~5000 measurements per second
- Flow rate displayed real-time
- P-V curve successfully plots live in the App
- Enclosure protects electronics, cooling fan works


Future Improvements

- Housing could be made of lighter material (polymer, fiberglass, etc)
- Power supply (battery) needed, currently using lab's variable DC supply
- Diagnose spikes in supply
- Finalize Wi-Fi connection between SBPC and phone
- Solder circuitry to euro card so that it may be secured within housing
- Re-calibrate electronics to obtain less percent error in measurements

Scope of Project **Functional** Diagram Sensor Selection Processing and Communication Theoretical Rationale Mobile **Application** Mounting and Housing Unit Test Apparatus Budget Conclusion

Questions?

Scope of Project **Functional** Diagram Sensor Selection Processing and Communication Theoretical Rationale Mobile Application Mounting and Housing Unit Test Apparatus Budget Conclusion

Supplementary Information

Input Flow (ft^A3/s), T (unitless, magnitude of degrees Fahrenheit), D (in) and ρ (lbm/ft^A3). Flow rates and temperatures taken from a GE HSR Compressor Performance Report. Densities derived from temperatures and static pressures in report. Diameter of pipe and Length (L) of pipe between valve and pressure gauge assumed.

 $Flow_{g} \coloneqq 10^8 \frac{t^3}{day} \qquad \qquad \rho_{g} \coloneqq .128 \frac{lbm}{t^3} \qquad \qquad T_{g} \coloneqq 60$

 $L := 10 \cdot D = 119.4 \cdot in$

D := 11.94in

$$A_{pipe} \coloneqq \left(\frac{\pi}{4}\right) \cdot D^2 \qquad \qquad \forall_s \coloneqq \frac{Flow_s}{A_{pipe}} = 1.489 \times 10^3 \cdot \frac{fl}{s}$$

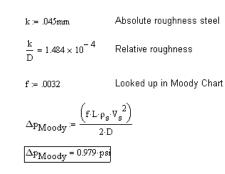
Dynamic Pressure

$$\boldsymbol{q}_{\boldsymbol{s}} \coloneqq \left(\frac{1}{2}\right) \cdot \boldsymbol{\rho}_{\boldsymbol{s}} \cdot \boldsymbol{\mathbb{V}_{\boldsymbol{s}}}^2$$

Pressure Drop in Pipe

$$\mathbf{u}_{s} := \left[\left(-6.70244 \cdot 10^{-14} \right) \cdot \mathbf{T}_{s}^{2} + \left(5.05027 \cdot 10^{-10} \right) \cdot \mathbf{T}_{s} + \right]$$

$$\operatorname{Re}_{\mathbf{s}} \coloneqq \frac{\left(\rho_{\mathbf{s}} \cdot \nabla_{\mathbf{s}} \cdot \mathbf{D}\right)}{\mu_{\mathbf{s}}} = 1.577 \times 10^{7}$$


Laminar Assumption

$$f_s := \frac{64}{Re_s} = 4.059 \times 10^{-6}$$

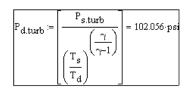
 $\Delta \mathbf{p}_{s} \coloneqq \frac{\left(\mathbf{f}_{s} \cdot \mathbf{L} \cdot \mathbf{p}_{s} \cdot \mathbf{V}_{s}^{-2}\right)}{2 \cdot \mathbf{D}} -$

 $\Delta p_s = 1.242 \times 10^{-3} \text{ psi}$

Turbulent Consideration

Considering Discharge Pressure

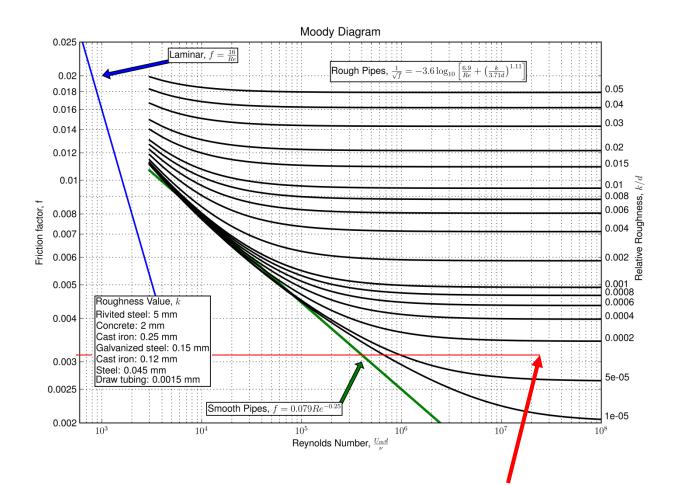

 $L_{\rm S} \coloneqq 6 {\rm ft} \qquad \begin{array}{c} T_{\rm d} \coloneqq 120 \qquad \gamma \coloneqq 1.4 \qquad P_{\rm 0S} \coloneqq 10 {\rm psi} \end{array}$


Laminar Assumption

 $P_s := P_{0s} - \Delta p_s = 9.999 \cdot psi$

Turbulent Consideration

 $P_{s,turb} := P_{0s} - \Delta p_{Moody} = 9.021 \cdot psi$



Conclusion:

May be useful for future design teams to explore, but not critical for initial development

- Scope of Project
- Functional
- Diagram
- Sensor
- Selection
- Processing and Communication
- Theoretical Rationale
- Mobile
- Application
- Mounting and
- Housing Unit Test Apparatus
- Budget
- Conclusion

Moody Chart

